Accelerated Thermal Cycling Test of Microencapsulated Paraffin Wax/Polyaniline Made by Simple Preparation Method for Solar Thermal Energy Storage

نویسندگان

  • Mahyar Silakhori
  • Mohammad Sajad Naghavi
  • Hendrik Simon Cornelis Metselaar
  • Teuku Meurah Indra Mahlia
  • Hadi Fauzi
  • Mohammad Mehrali
چکیده

Microencapsulated paraffin wax/polyaniline was prepared using a simple in situ polymerization technique, and its performance characteristics were investigated. Weight losses of samples were determined by Thermal Gravimetry Analysis (TGA). The microencapsulated samples with 23% and 49% paraffin showed less decomposition after 330 °C than with higher percentage of paraffin. These samples were then subjected to a thermal cycling test. Thermal properties of microencapsulated paraffin wax were evaluated by Differential Scanning Calorimeter (DSC). Structure stability and compatibility of core and coating materials were also tested by Fourier transform infrared spectrophotometer (FTIR), and the surface morphology of the samples are shown by Field Emission Scanning Electron Microscopy (FESEM). It has been found that the microencapsulated paraffin waxes show little change in the latent heat of fusion and melting temperature after one thousand thermal recycles. Besides, the chemical characteristics and structural profile remained constant after one thousand thermal cycling tests. Therefore, microencapsulated paraffin wax/polyaniline is a stable material that can be used for thermal energy storage systems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

PERFORMANCE OF PARAFFIN AS PCM SOLAR THERMAL ENERGY STORAGE K.Kavitha and S.Arumugam

The continuous increase in the level of greenhouse gas emissions and the rise in fuel prices are the main driving forces behind the efforts for more effectively utilize various sources of renewable energy. In many parts of the world direct solar radiation is considered to be one of the most prospective sources of energy. In this study, the thermal performance of a phase change thermal storage d...

متن کامل

Microencapsulation of Butyl Palmitate in Polystyrene-co-Methyl Methacrylate Shell for Thermal Energy Storage Application

MicroEncapsulated Phase Change Materials (MEPCM) are green materials which could be used for thermal energy saving applications in buildings as a non-pollutant method for environmental. PCMs could passively reduce peak cooling loads in hot seasons because of their high energy storage capacities at a constant temperature. Purpose of this paper is manufacturing Microencapsulated PCM (MPCM) pr...

متن کامل

Preparation and Characterization of Microencapsulated Phase Change Materials for Use in Building Applications

A method for preparing and characterizing microencapsulated phase change materials (MPCM) was developed. A comparison with a commercial MPCM is also presented. Both MPCM contained paraffin wax as PCM with acrylic shell. The melting temperature of the PCM was around 21 °C, suitable for building applications. The M-2 (our laboratory made sample) and Micronal® DS 5008 X (BASF) samples were charact...

متن کامل

Enhancement of Thermal Conductivity of a PCM Based Energy Storage System

The PCM based energy storage system is commonly used for storing waste heat and solar heat. Main disadvantage of such system is slow response during charging and discharging. In the present experiment thermal conductivity of wax based storage system is improved by embedding Copper,Aluminium and iron springs. Experiments shows that such systems show superior performance during charging and disch...

متن کامل

Using Dynamic Thermal Rating and Energy Storage Systems Technologies Simultaneously for Optimal Integration and Utilization of Renewable Energy Sources

Nowadays, optimal integration and utilization of renewable energy sources (RES) are of the most challenging issues in power systems. The wind and solar generation units' maximum production may or may not occur at peak consumption times resulting in non-optimal utilization of these resources. As a solution to this problem, energy storage systems (ESS) are embedded in networks. However, the power...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2013